o -

T

nw-f""»’-'i‘-..ﬂv ‘M" -v.,._'r."“‘ ol eI e R o o .ﬂ"". ““‘"‘-.‘ﬁ:m’*‘ﬁ?’*““’“‘,
o "J“‘ .) g,

LR

PERSPECTIVES

The International Joumnal of Supercomputser Applica-
tions, Volume 8, No. 2, Summer 1994, pp. 123-142
© 1994 Massachusetts Institute of Technology.

FAST PARALLEL TREE
CODES FOR
GRAVITATIONAL AND
FLUID DYNAMICAL
N-BODY PROBLEMS

John K. Salmon

Physics Department, California
Institute of Technology,

Pasadena, California

Michael S. Warren'

Theoretical Astrophysics,

Los Alamos National Laboratory,
Los Alamos, New Mexico
Grégoire S. Winckelmans®
Graduate Aeronautical Laboratories,
California Institute of Technology,
Pasadena, California

We discuss two physical systems from
different disciplines that make use of
the same algorithmic and mathemati-
cal structures as a way of reducing the
number of operations necessary (o
complete a realistic simulation. In the
gravitational N-body problem, the ac-
celeration of an object is given by the
familiar Newtonian laws of motion
and gravitation. The computational
load is reduced by treating groups of
bodies as single multipole sources
rather than as individual bodies. In the
simulation of incompressible flows, the
flow may be modeled by the dynamics
of a set of N interacting vortices. Vor-
tices are vector objects in three dimen-
sions, but their interactions are math-
ematically similar to that of gravitating
masses. The multipole approximation
can be used to greatly reduce the time
needed to compute the interactions
between vortices. Both types of simu-
lations are carried out on the Intel
Touchstone Delta, a parallel MIMD
computer with 512 processors. Tim-
ings are reported for systems of up to

1. Department of Physics, University of
California, Santa Barbara.

2 New address: Department of Mechan-
ical Engineering, University of Sher-
brooke, Sherbrooke, Québec, Canada.

10 million bodies, and demonstrate
that the implementation scales well on
massively parallel systems. The major-
ity of the code is common to both ap-
plications, which differ only in some of
the “physics” modules. In particular,
the code for parallel-tree construction
and traversal is shared.

1. INTRODUCTION

Tree-based algorithms have had a ma-
jor impact on the study of the evolu-
tion of gravitating systems as they pro-
vide a method of computing the mu-
tual interactions of N bodies in much
less than O(N?) time. Tree codes have
been reported to scale as O(N) or O(N
log N), but the “big-O" notation can be
misleading for practical values of N,
where true performance is dominated
by the constants that are discarded by
the asymptotic analysis. Large-scale
application of tree-based approxima-
tion methods has (to our knowledge)
only occurred in astrophysics (Warren
et al,, 1992; Dubinski and Carlberg,
1991; Suginohara et al., 1991; Katz,
Hernquist, and Weinberg, 1992) al-
though preliminary work has been
done on two-dimensional (Rokhlin,
1985; Pépin, 1990; Greengard, 1990;
Engheta et al,, 1992), and three-di-
mensional systems (Greengard and
Rokhlin, 1989; Schmidt and Lee,
1991; Board et al., 1992; Ding et al.,
1992) from other disciplines.

One roadblock to widespread accep-
tance of tree codes is that they are in-
herently difficult to program, espe-
cially for parallel machines. We report
on an implementation of a tree code
that is not specific to a particular prob-
lem domain. Although designed with
astrophysical research firmly in mind,
the code described here addresses ex-
ample problems in vortex dynamics as
well as in astrophysics. We report on
its performance on the intel Touch-
stone Delta systemn with up to 512 dis-
tributed-memory processors.

Two outcomes are possible when al-

gorithmic advances drastically reduce
the time and space required to solve a
class of problems. The first is that the
problems cease to be “supercomputer
applications,” and fall into the domain
of workstations and personal comput-
ers. The second is that practitioners
gradually advance the state-of-the-art
in the underlying discipline, and much
larger problems become the norm. In
the latter case, supercomputers re-
main a critical component, and it is im-
portant to learn whether the new algo-
rithm is well suited to supercomputer
architectures, i.e., massively parallel
systems. The second outcome has cer-
tainly been the case in astrophysics,
where state-of-the-art simulations now
evolve systems of 107-10® bodies. We
expect it will also occur in other fields
as tree-based methods become gener-
ally available.

2. THE GRAVITATIONAL
N-BODY PROBLEM

2.1 Mathematics

While it is possible to describe tree
methods in terms of broad generality
and abstraction, we find it helpful to
begin with a concrete example and de-
velop the abstraction in stages. (Not
coincidentally, this is also how our un-
derstanding of the problem evolved.)
Newton himself would find the under-
lying mathematics of the gravitational
N-body problem quite familiar. In
modern notation, Newton's law of
gravitation and his second law of mo-
tion are:

d2
dr? (1) = — Vo(x'(t).0)
S=l,...,1V, (l)
m?
H=- > —B— 2
b = = 2 g

q

We have chosen units in which the
gravitational constant is unity. When

evaluated at the position of one of the
particles, x*(t), the expression in Eq. (2)
is clearly singular. The summation
must be understood not to include the
“self-interaction” of a mass-point with
itself. Alternatively, it is possible to ar-
tificially “smooth” the Newtonian in-
teraction, so that the gravitational po-
tential between nearby bodies is
bounded. This procedure also has the
side effect of removing “collisions,”
something that is often desirable from
a numerical or physical point of view
(Hockney and Eastwood, 1981; Dyer
and Ip, 1993). We can define a
smoothed Green’s funcuon, G, (x)
= (l/o)G(ix|l/o), and a smoothed
potental:

d?
SE X = = Voa(x'(0).0)

= - 2 VG(x()
q
— x%(6))mY. (3)

Many choices are available for the
smoothed Green’s function. For the
tests reported here, we use Plummer
smoothing: G(p) = 1/(p* + 1)~

Equations (1) and (2) or (3) consti-
tute a system of second-order ordinary
differential equations. As such, it is not
particularly difficult to integrate in
time numerically. The computation-
ally challenging part is the evaluation
of the N right-hand sides, each of
which is a sum of N — | terms. The
gravitational force law is long range,
i.e., the force law falls off slowly
enough that contributions from dis-
tant objects cannot be assumed to van-
ish. Thus, it is not permissible simply
to disregard contributions from bodies
that are more distant than some pre-
scribed cutoff.

We can turn again to Newton, at
least for the first term in the solution.
Let us imagine that the point x is well
separated (in a sense defined below)
from a spatially localized subset of the
rest of the points, ¥. Then the sum (at

sy
«gg; gg
S
(et

least over the bodies in ¥) may be ap-
proximated by:

Z m? _ Mg
qJEF Ix — x9| Ix — x.ull
n _]'-_ Qg(x - X(m)i(x - xtm)!'
2 ”X - xcm'lg
+us (4)

where M, is the total mass in &, x,,,, is
its center of mass, Q, is the quadru-
pole moment tensor of ¥ about its cen-
ter of mass,

Q= Z m?(3(x? — x_)i{x¥ — X)),
qES

- Bij(xq = Xewi) * (xq - Xew))

(5)

and we use the Einstein summation
convention implying summation over
repeated vector/tensor indices. Equa-
tion (4) comprises the first terms of an
expansion that describes the subset of
points in terms of their mass, center of
mass, quadrupole moments, octopole
moments, etc. In general, the second
term in the expansion contains the di-
pole moment of ¥, but since the dipole
moment vanishes about its center of
mass, the dipole contribution to the
force law vanishes by construction.
The first term on the right-hand side
of Eq. (4) approximates the contents of
¥ as a point source at its center of
mass. Subsequent terms are correct for
the shape of the matter distribution
within &. In general, we can retain as
many terms as desired in the expan-
sion of the multipole moments of ¥,
designating the highest retained order
as p. so p = 1 for the monopole ap-
proximation (since the dipole vanishes
exactly, we may as well say that we've
“retained” it), and p = 2 for the quad-
rupole approximation.

Equation {4) represents a major sim-
plification, since its evaluation requires
a fixed amount of time, regardless of
how many points there are in &. It is

—

b

~

i -
A b g b e o a4 87

analogous to the observation that if we
wished to know the force exerted on
an apple by the ~10°Y atoms in the
Earth, we could approximate the
Earth as a point mass located at its cen-
ter of mass, and compute the force in
a very small number of operations. It
is by systematic application of Eq. (4)
(or something mathematically equiva-
lent) that all the fast N-body methods
reduce the overall complexity from
O(N®) to something much more trac-
table. Equation (4), of course, presup-
poses that the aggregate data, i.e., M,
X, etc., are known, so that any
method that uses it must (a) compute
the aggregate data efficiently, and (b)
use each aggregate datum many times
to amortize the cost of its computation.

We must also remember that Eq. (4)
is an approximation. It must be used
with care as it can introduce excessive
errors into a calculation if used inap-
propriately. We have shown (Salmon
and Warren, 1994) thar the error in-
troduced by using an approximation
like Eq. (4) can be bounded as tollows:

1 I

€Vhix)| = 27 b\
(1-3)

B
x((p+2>5,%'

B +2
- —pte
#+d d"”) (6)

where p is the highest order retained
in the expansion of Eq. (4), d =
"X - xﬂm“' b= maX,eqy ”xq - xr'mH’
and the moments B, are defined as

B, = 2 Ix? = xo'm? (7)

gEY
Equation (6) is essentially a precise
statement of the fact that the multipole
approximation is more accurate when:

® The distance to the measurement
point is large (large).

® The sources are scattered over a
small region (small).

® High-order approximations are
used (large p}.

® Multipoles that have been neglected
are small {small B,).

Note that the multipole series does not
converge at all for d < b, so this con-
stitutes a precise statement of the con-
dition that the point x must be “well-
separated” from the points in &. Fur-
thermore, notice that increasing the
order of the multipole approximation
is just one way of improving the ap-
proximation. It is an open (and ex-
tremely interesting) question whether
high-order approximations are cost ef-
fective, or whether it is simply better to
restrict use of the approximation to
larger values of d.

2.2 Data Structures

The approximation in Eq. (4) is only
part of the story. A mechanism must
be found to identify candidate subsets
of bodies, compute their aggregate pa-
rameters {mass, center of mass, etc.),
and selectively apply the multipole ap-
proximation to the evaluation of accel-
erations, Several different data struc-
tures have been proposed, including
binary trees (Appel, 1985; Benz et al.,
1990), 2%-trees (Barnes and Hut, 1986)
(where d is the dimensionality of the
underlying space),' and multigrids of
fixed depth (Greengard, 1987; Zhao,
1987). Tree structures are inherently
adaptive, which means they can effi-
ciently model systems that contain
large density contrasts, while the
multi-grid structures may enjoy some
performance advantages because the
fundamental objects are typically
multi-dimensional arrays accessed in
regular and predictable patterns, i.e.,
patterns suitable for efficient execu-
tion on vector and super-scalar proces-
sors. We have elected to work with

1. We usually refer to quad-trees or oct-
trees in two and three dimensions.

adaptive oct-trees in three dimensions
because the astrophysical problems
that bred our initial interest in the
topic are subject to extremely large
and dynamic density contrasts, mak-
ing adaptivity a necessary feature of
any viable method. Some of the other
problem domains where tree methods
show promise may not require the
adaptivity inherent in our code. It re-
mains to be seen whether the over-
heads associated with adaptivity are
significant vis-a-vis highly optimized
nonadaptive codes.

An oct-tree is a partition of three-
dimensional space into cubical vol-
umes. Each cube has up to eight
daughters, obtained by splitting the
cube in half in each of the three Car-
tesian directions. Clearly, in d dimen-
sions, the tree branches up to 24 ways
at each level. Quad-trees are far easier
to illustrate on paper than oct-trees, so
we use them in the figures. A quad-
tree with 2,000 centrally concentrated
bodies is shown in Figure 1. Notice
that the tree is adaptive, so that in the
center, where the density of bodies is
high, the tree is more finely resolved.
The adaptivity is achieved by building
the quad-tree so that terminal cells
contain exactly one body (Barnes and
Hut, 1986). Thus, the depth of the
tree is approximately logarithmic in
terms of the local density of particles.

Each cell in an oct-tree has topolog-
ical properties (parents, daughters,
siblings), geomerrical properties (spa-
tial coordinates, size), and numerical
properties (mass, center of mass, qua-
drupole moment, etc.). The program-
mer wishing to represent these prop-
erties is presented with several choices.
The topological aspects of the tree can
obviously be captured (at least on a
uniprocessor) with pointers. Compli-
cations arise in parallel with regard to
the meaning of off-processor pointers
(for distributed-memory systems), or
synchronization (for shared-memory
systems), but these problems can be
overcome (Salmon, 1990). Warren

StEEF DN
] : :,_ AN
- . ani 2l
g Fion H L '1‘ 3 : 5
NEE e _}_‘. + E_._f, u&liﬁ] m
] .) e P o = .
i [« [T 1] D
e 13 et T :E _?}_q':r_ et
; W B e M 2 mumaRr A
H HA E B " [ST T ST JH
e B meerr, e] kb PR B H [R
HEN EREE. 1] S o R agEEgrag .
s rowt P *1 P I35 1 [FH
T'[T';ll'[hala e, ' T_ﬂ"-‘F | B[
Al o - - BT 3 i THY | o
B : MBS W 1 .-1.
= a M e ¥ Tt -]
AT e g B T L [
Li [..‘” T —a dfz s | M 1 N REmg
L™ i A P e [H B [B
S R et BT
.“-l-t_ -l- : " 3 ?“*F:.m - LT T R |
"H T T L B R R] LuE =
Hl G [Tl i e A les
[TP TH HH e b | e
i Bai ml S [Pl & | WM H
LT H EE iE i = e g
"" B Lo '{‘ ‘3" +
] =i 4 2 L _P. an HH H] my ELT I.; I
sl R e i HG N =2
B ==l . on
up _1_}‘ 1 -h—-ﬁhl AT
=a 1

Fig. 1

A quad-trea with 2,000 centrally concentrated bodies The tree is more refined

in regions of higher particle density because of the rule that a terminal cell can cantain only one body.

and Salmon (1992) demonstrated
large-scale parallelism when the data
needed by each processor can be iden-
tified in advance. This method has
been used in a number of astrophysi-
cal simulations (Salmon et al., 1990:
Warren et al., 1992) that employed a
much less rigorous error bound than
that of Eq. (6).

Unfortunately, Eq. (6) does not al-
low us to determine in advance which
data will be required by each cell. This
is problematical for the methods of
Salmon (1990), so a new approach to
parallelism, based on accessing data on
demand has been implemented (War-
ren and Salmon, 1993). The new

method is built on the idea of assign-

ing to every possible cell in the tree a
unique multi-word key. With a 64-bit
key itis possible to identify every cell in
a octtree with 21 levels. This has
proved adequate for highly clustered
simulations with up to 107 bodies. The
set of all possible keys is clearly much
larger than the set of keys that will be
present in any given simulation. This
state of affairs suggests a hash table as
an appropriate data structure for stor-
ing tree data.

Figure 2 shows schematically how
the keys designate unique cells in the
tree. The root has key 1. The daugh-
ters of any node are obtained by a bi-
nary left shift of the parent’s key by d
and then setting the low bits to a num-

ber between 0 and 2¢ — 1 to distin-
guish among the siblings. The parent
of a cell is obtained by right shift of its
key by d. The bodies in the simulation
can be assigned unique keys as well,
simply by finding the key correspond-
ing to the smallest possible cell that
contains the given body.

2.3 Control Structures

We have shown (at least schematically)
how our tree will be represented in
memory. We now turn to showing
how to use the data to evaluate gravi-
tational forces. For this, we must
traverse the tree data structure, accu-
mulating acceptable interactions as we
proceed. The traversal is governed by
a Multipole Acceptability Criterion
(MAC) which tells us when Eq. (4) is
sufficiently accurate to be used.

Many options are available for the
MAC (Salmon and Warren, 1994). In
this paper, we elect to bound the error
introduced by each multipole approx-
imation. Thus, we can use Eq. (6) di-

2 |'|'r%l/'I s m[;:”;'
L

R et
nooin =T A
T
pmin
i
- - a - T e e
- --r—- - -
o = =
/:._’ e e

Fig. 2 A four-lavel quad-tree,
expanded to show the ralationship
between parent cells and
daughters The key values of sach cell are
shown in binary. Daughter keys are obtained from
parents by a two-bit left-shift, followed by binary OR
of a daughter-number in the range 00-11 {binary).

ar, #*

jﬁﬂ*#")’ o o -'W"“"=M‘L il -,

el

it

Rl N s’é"h'“"'ﬁ “’ A

i ’p-."”

. il
el T s, -, -w"‘* s

r""i?“’m L SR

rectly and allow only interactions for
which the right-hand side of Eq. (6) is
less than some prescribed tolerance.

To use Eq. (6), we simply carry outa
top-down traversal of the tree for each
body independently, terminating the
descent whenever Eq. (6) is satisfied by
a cell. In those cases, Eq. (4) is evalu-
ated to compute the influence of the
contents of the cell on the body. If we
reach a terminal node of the tree be-
fore Eq. (6) is satisfied, individual
body-body interactions are computed.
This strategy forms the basis of our
vortex dynamics code (see Section 3).

For the gravitational problem, we
have implemented an additional im-
provement by noting that particles
that are near each other feel almost
the same influence from distant ob-
jects (Appel, 1985; Rokhlin, 1985;
Greengard, 1987). To extend our “ap-
ple” analogy further, now note that
two neighboring apples feel almost the
same gravitational field from the mul-
titude of elementary particles consti-
tuting the Earth. Thus, if we wish to
know the gravitational acceleration of
two apples in the same tree, it may be
sufficient to evaluate Eq. (4) once and
use the same answer for both. In fact,
this analogy again only captures the
first (constant) term in a series expan-
sion. This time, the expansion is a Tay-
lor series for Eq. (4) around the point
x. In order to pursue this line of rea-
soning, we need an error bound anal-
ogous to Eq. (6). We state here, with-
out proof, the result that the combined
error resulting from the dipole ap-
proximation and the linear term of a
Taylor series expansion of the right-
hand side of Eq. (4}, at a distance A
from x is bounded by:

EVe(x+ Ay S
1 | By Bs
d2(1 A+b)2(3d_2_gﬁ)'

d

(8)

where

Boy = Bs + 24B, + A®B,. (9)

Use of Taylor series to reduce the
number of evaluations of Eq. (4) intro-
duces a new class of interactions into
the problem. Formerly, Eq. (4) was all
that was required to evaluate the inter-
actions between bodies and the aggre-
gate data stored in cells. Now it is also
necessary to evaluate interactions be-
tween souree cells, i.e., the aggregate
data describing the field sources, mass,
center of mass, etc., and the sink cells,
i.e., the coefficients of a Taylor series
expansion around some arbitrary
point. In addition, we must compute
translations of the origin of a Taylor se-
ries expansion from the center of a
parent sink cell to the centers of its
daughters.

We can compute the field at every
body position by looping over all of the
body positions in order of increasing
key. For each body, we find the near-
est common ancestor with the previ-
ous body. Any Taylor expansions
above that common ancestor remain
valid for the new body, while those in
the intervening levels must be com-
puted by translating the Taylor expan-
sion of the parent and accumulating
any cell-cell interactions that satisfy the
extended cell-cell MAC (based on Eq,
(8)). It is crucial for bodies to be sorted
in hash-key order as that guarantees a
high correlation between the spatial
positions of successive bodies, so that
only a small number (one, on average)
of Taylor expansions will need to be
recomputed for each new body. Thus,
use of the Taylor series expansion re-
duces the asymptotic order of the
method to O(N), but this means little
unless the constants of proportionality
are also compared. The evaluation of
the coefficients of the Taylor series can
be much more time consuming than
the evaluation of Eq. {4) alone, so the
benefit of fewer interactions is par-
tially cancelled out by the greater cost
of those interactions. Preliminary re-
sults on a one-million body system in-

dicate that the total number of float-
ing-point operations is about a factor
of four lower when using cell-cell in-
teractions and Eq. (8) compared with
use of body-cell interactions (Eq. (4))
and Eq. (6).

2.4 Parallelism

Two basic issues arise in paralielizing
many scientific algorithms for distrib-
uted-memory machines: decomposi-
tion and data acquisition. Decomposi-
tion refers to the strategy employed to
partition the problem among the avail-
able processors. Data acquisition refers
to the need to communicate between
processors so that they have the data
they need to carry out the necessary
computations on their subset of the
data. Decomposition is concerned with
load balance, i.e., arranging that all the
processors finish at approximately the
same time, and with minimizing the
volume of communication. Data acqui-
sition is often concerned with minimiz-
ing or hiding the high latency assod-
ated with every interprocessor mes-
sage. This is achieved by overlapping
communication and computation
when the hardware supports it, and/or
by buffering messages into large
blocks that can be sent with the latency
overhead of only a single message.
We have already seen that it is de-
sirable to sort the bodies in our simu-
lation into a sequence based on the
hash-table key. We return to the con-
cept of a key-sorted list of bodies to
describe our parallel decomposition.
Imagine that the bodies are already
sorted in increasing hash-key order.
We simply break the list into segments
and assign each segment to a proces-
sor. A processor becomes responsible
for computing the forces on a group
of bodies that forms a contiguous seg-
ment of the sorted list of bodies. Fig-
ure 3 shows a path that traces out val-
ues of increasing key in a quad-tree
with depth three. The decomposition
is achieved by cutting the curve into P

Fip- 3 A curve that traces
Increasing values of the
hash-function key in a quad-tree of
depth three The decomposition is obtained by
locating particles on this curve {more precisely, on
the analogous curve that fills the lowest level of the
tree), and assigning contiguous segments to
processors.

(number of processors) segments of
equal cost.

By dividing the path into equal-cost
pieces, we are allowing that some bod-
ies are more expensive than others.
The cost of each body is a measure of
how much cpu time is required to
compute the forces on it. In a highly
clustered, adaptive tree, the ratio of
the most expensive to the least expen-
sive body can be as high as 20, so it is
important to balance actual cost,
rather than just particle number. We
determine the decomposition-cost of
each body empirically by recording the
number of interactions it required on
the previous timestep, assigning every
body equal cost on the first timestep,
This can lead to considerable load im-
balance on the first timestep, but the
etfect is negligible over the course of a
simulation that typically requires hun-
dreds or thousands of timesteps.

This decomposition has the advan-
tage that it can be generated with a
general-purpose parallel sort routine,
and also that it leads to spatial locality
in the decompaosition. The latter prop-

%W@yzﬁw SRR
& &iz; i ﬁ%&:ﬁw?*@r;%:ﬂfﬁfa%&ﬁigﬁ‘“ﬁ

erty reduces the amount of interpro-
cessor communication traffic, as spa-
tially nearby bodies tend to require the
same off-processor information. In
contrast to the decomposition used by
Salmon (1990), boundaries between
processors correspond to divisions
within the tree-data structure. Notice
also that from one timestep to the
next, the bodies do not move signifi-
cantly, so that on every timestep but
the first, the sorting subroutine is pre-
sented with almost-sorted input.

The second issue in parallelism is
the acquisition of off-processor data.
One strategy, discussed by Salmon
(1990), is to acquire all the necessary
off-processor data in a communication
phase prior to the computation. This
has the advantage of leaving the main
loop of the computation essentially un-
touched, allowing for re-use of highly
optimized sequential code. In this
technique it must also be possible to
determine a priori which data will be
needed by which processors. Unfortu-
nately, when Eq. (6) is used for the
MAC, it is not possible 1o predeter-
mine which data will be necessary.
Thus, we adopt a new strategy in
which off-processor data is acquired
on demand.

This new scheme requires a small
modification of the hash-table data
structure used to represent the tree. In
parallel, the hash-table lookup func-
tions can return in one of three possi-
ble ways: they can find the requested
item, they can report that the re-
quested item does not exist, or they
can report that the requested item ex-
ists in another processor’s memory. In
the last case, it is lett up to the caller
how to proceed. The simplest ap-
proach is to simply execute a remote
procedure call in order to retrieve the
remote data. This is unacceptably
slow, as it entails several times the full
message latency for every remote data
access. An alternative is to enqueue a
request to be dispatched at a later time
{after many more requests have been

enqueued), and to proceed with other
branches of the tree, or with other par-
ticles. This greatly reduces the total
number of messages that have to be
sent, and, hence, overhead due to
message latency. In addition, in this
approach it is possible to almost totally
overlap communication with calcula-
tion, since if the hardware supports si-
multaneous communication and calcu-
lation, the code can easily take advan-
tage of it. On the other hand, it is
necessary to make substantial changes
to the critical inner loop of the tree
traversal routine in order to allow for
deferred processing of off-processor
cells and simultaneous processing of
several bodies.

2.5 Performance

We report here some results obtained
with the gravitational code on the Intel
Touchstone Delta system. Although
the Delta has 576 processors (both
80386 and i860), a maximum of 512 of
the 40-MHz i860's may be assigned to
a single job at any one time (the others
are responsible for various system
tasks like managing peripheral de-
vices, user logins, etc.). Each processor
has 16 Mb of memory and is con-
nected to four neighbors through a
two-dimensional mesh routing net-
work. Interprocessor communication
is accomplished by means of explicit
system calls embedded in the applica-
tion’s C or FORTRAN code. There is
no hardware support for shared mem-
ory. The code is written entirely in
ANSI C, and has been ported to sev-
eral other parallel platforms, includ-
ing the CM-5, the SP-1, workstation
networks, the Intel Paragon, and the
Ncube-2. Notably, the code also com-
piles and runs with no modifications
whatsoever on sequental platforms
that supply an ANSI C compiler.

We report results that use a mono-
pole approximation for the force law
and a first-order Taylor series for
translation. Thus, the first neglected

.

Y

e

Ca

———

Fig. 4 Points are located at the (xy) projection of the three-dimensional positions of the bodies in our example
N-body problem. The figure shows 86,995 bodies chosen at random from the full data set. The region shown is 10 Mpc

across,

error term is always inversely propor-
tional to the square of the distance be-
tween the source and the observation
point. Errors in the acceleration are
analytically bounded, using Eq. (8), to
be less than 2% of the force at the edge
of the spherical domain. In practice,
the errors are typically much less than
2%.

The particle distribution is taken
from a series of simulations designed
to simulate the formation of large-
scale structure in the universe.? We
chose a representative distribution

2 Itis timestep 540 of model 128m.n-1b
in Warren et al. (1992).

from late in the evolution that displays
significant clustering. The density con-
trast between the densest and least
dense regions in the simulation is ap-
proximately 10°. The particles repre-
sent the so-called “dark matter” which
is believed to dominate the mass of the
universe. The region simulated is a
sphere 10 Mpc in dizmeter, containing
1,099,135 bodies. Each body has a
mass of approximately 3.3 x 107 solar
masses, which is appreciably less than
the mass of a typical galaxy (10''-10"*
solar masses). To generate data sets
with fewer bodies we simply chose
bodies at random from the full data
set. While this procedure may be ques-
tionable from a physical point of view,

it ensures that the scaling behavior (as
a function of N) will not be contami-
nated by differences arising from dif-
ferent spatial distributions ot bodies.
Figure 4 shows approximately 87,000
of the bodies in our data set.

Figure 5 shows timings for data sets
with & = 5,000, 10,000, 20,000,
50,000, 100,000, 200,000, 500,000
and 1,099,135 bodies on 1, 2, 4,...,
512 processor subsets of the Delta.
The times reported are the total time
per timestep (force evaluation, velocity
update, position update), averaged
over 2 to 5 timesteps (more for less
time-consuming runs). We do not
count the first timestep because it suf-
fers from an anomalous load imbal-
ance which is corrected in later steps
after the “cost” of each particle is
known. The variation between time-
steps is typically a few percent, except
for the first, which typically takes
about twice as long as the others. The
machine is not dedicated during these
benchmarks, so variations may be due

T (sac)

Fig. 5 Running time, In seconds,
for each Iteration of the
gravitational N-body problem Times
are reported for processor number P = 1,2,..., 512,
They ars computed by averaging 2-5 successive
fterations. In all cases, the initial timestep is not
included because it suffers from load imbalance and
1/0 startup.

SRRt e R
Wae

to the activity of other users or to in-
herent variations from one timestep to
the next.

The fact that the curves are parallel
and well separated for large N indi-
cates that adding processors really
does reduce the execution time. In or-
der to remove the dominant trends in
the data, we plot in Figure 6 the quan-
tity TP/N against N. In this figure,
“perfect” parallelism is represented by
all curves lying on top of the extrapo-
lation of the P = I curve. It is clear
that the P = 512 curve is still ap-
proaching the others, i.e., we have not
yet reached the large-N limit, even
with over one million bodies. In addi-
tion, Figure 6 shows that the scaling of
T with N is slightly super-linear for the
range of N studied. In fact, it is close to
T o N'*% butit is very difficult to dis-
tinguish between slightly different
functional forms of the asymptotic
scaling behavior with only four £ = 1
data points.

T
Paj12 +—
g P=266 -+
N Pai28
\\ PB4
p=33 = -
P=16 -+
0 r. “w, P=8 -&-
S < P=a «
- Pl o
= ~ P=1 —+—
. .,
g i - o
o .,
H “ . g _g
8 e
g % 5 E: cmpem
ot ” = -0
g . e g o W S
£ 0ot x " =
an e B
x o R |
» e e m
e
- - : o ®
s a P —
- —
!o /"L/
o 1 L

1000000

Fig. 8 The same data as Fig. 5, but
the abscissa is TP/N The vertical distance
from the (extrapolation of the} P = 1 curve to the
other curves is a good indicator of parallel overhead.
In addition, these curves indicate that the time per
timestap scales slightly super-linearly with M. It is
clear that parallsl overhead has still not reached its
"large-N limit” with 1 million bodies on 512
Processors.

%5;55@% ;

We have also run a series of bench-
marks with a uniform, spherical distri-
bution of points (not shown). In Fig-
ure 7, we plot TP/N against N for up to
10 million uniformly distributed bod-
ies. The force evaluations are 3-5
times faster in the case of a uniform
distribution of particles, compared
with the highly clustered, evolved as-
trophysical data. In addition, the
N-dependence appears to be very
close to T = N, A detailed analysis of
the dependence of the time-per-
timestep on the particle distribution
will be presented elsewhere.

3. THE VORTEX PARTICLE
N-BODY PROBLEM

3.1 Mathematics

The vorticity equation (w = V X u,
and hence V- = 0) for an incom-
pressible fluid (V-u = 0) is obtained
by taking the curl of the momentum
equation:

Du "
T)-t_ ={(Vu) r @ + vV, (10)

where DfiDt = ofiat + (u - V) [is the
Lagrangian derivative and v is the
kinematic viscosity. The vorticity equa-
tion is thus a nonlinear transport equa-
tion that can be solved using a particle
method. In the regularized version of
the method (Rehbach, 1977; Chorin,
1980, 1981; Saffman, 1980; Satfman
and Meiron, 1986: Leonard, 1985;
Beale and Majda, 1982a, 1982b; No-
vikov, 1983; Anderson and Green-
gard, 1985; Mosher, 1985; Beale,
1986; Choquin, 1987; Cottet, 1988;
Chequin and Cottet, 1988; Chua et al.,
1988; Winckelmans, 1989; Winckel-
mans and Leonard, 1988, 1989, 1993)
the particle representation of the vor-
ticity field is taken as:

P=256 +—
P=128 -
=84 -0
El P=1B
Pad o
3 Pal =
5 4
- 14 Y
3 5
E a0 a S \ 4
F4 % LN \\
§ g
&
z A "
& & x o
- <
LS
a
a.
i
o * - *
| _4 . "
10000 100000 1000000 10000000

Fig. 7 Timing data for a uniform,
spherical distribution of bodies
plottad with an abscissa of TP/N.

The vertical distance from the (extrapolation of the)
P = 1 curve to the other curves is a good indicator
of parallel overhead. For uniform data, the N
dependence is very close to linear, and parallel
overhead is less than 50% for 10 million badies on
256 processors.

W(x,1)

= D Lo(x — x4(t))
q

vol?
(o)

> Lo(x — xUNYL).
! (11)

where { is a radially symmetric regu-
larization function and & is a smooth-
ing radius (i.e., a core size): { (x) =
(1/a®) £ {Ix|lo)) with the normalization
15 Lp)p® dp = 1. Notice that @, does
not constitute a generally divergence-
free “basis.”

The velocity field is computed from
the particle representation of the vor-
ticity field as the curl of a vector stream
function,u, = VX i, (hence V - u, =
0). The vector stream function thus
satisfies V3, (x,) = —@,(x,?). Defin-
ing G,(x) = (l/a) G(x|/(c) with G(p)
such that

= L(p) = V*G(p)

p‘Z dp 4 dp s

L

7

3
]

N

%
-

—

ark %W SR ﬂ*vf“"'

".‘"-4-“'““ J‘a K

o

““mj &t :"“-m-..- "$=_" ¥ S #,_’,J’ ’

=3

pte . t ,Mm‘:.f““‘ ot

skl

gives us
Yo(x,) = Eq‘, Golx — x9(0)¥9(1)
(13)
ug(x,) = D (VGoix — x/(1)))
xEr yi(), (14)

Gaussian smoothing is used:

2 1/2 e
&p) = (;) eP 2, (15)
1 P
G(p) = Eerf (w) . (16)

It leads to a second-order numerical
method, provided the core-over-
lapping condition remains satisfied
(i.e., o/h = 1 where h is a typical spac-
ing between the particles). We approx-
imate erf (p/\/§) = | forp > 4, i.e., for
Ix}| > 40, we have G (x) = 1/x].

In the inviscid case, the evolution
equations for the particle position and
strength vector are taken as

T xX'(t) = ug(x’(0).0), (17)

d 5 — 5 .
a'v(t) = (Vug(x*(£).1)) + ¥*(1).
(18)

Evaluation of the velocity field in-
duced by a system of vortex particles
is, thus, very similar to evaluation of
the acceleration field induced by a sys-
tem of point masses in gravitation.
Equation (14) is structurally almost
identical to Eq. (3) except for having to
replace the scalar particle mass m? by
the vector vorticity strength, ¥¢, and
scalar multiplication by a vector cross-
product. Just as in the gravitational
case, it is possible to approximate the
summation in Eq. (14) by an expres-
sion similar to Eq. (4) involving the
multipole moments of the vorticity dis-
tribution. The asymptotic behavior of
the Green’s function, G, is even the

same, which allows us to re-use much
of the machinery involving error
bounds given by Salmon and Warren
(1994). A vortex particle code is, how-
ever, more costly than a gravitational
code since (1) the particle strength and
potential fields are vectors rather than
scalars, so the potential evaluation is
immediately three times as costly, and
(2) both the first and second deriva-
tives of the vector streamfunction
must be evaluated in order to obtain
both the velocity vector and the veloc-
ity gradient tensor, which appears in
the right-hand side of Eq. (18).

Other difficulties arise from the in-
terpretation of the vortex particles as
representing a continuum. Hence, a
smoothing function that leads to con-
vergence, e.g., Gaussian smoothing,
must be used; note that Gaussian
smoothing is considerably more costly
than the Plummer smoothing, used in
the gravitational code. In vortex simu-
lations, we also have to ensure that the
smoothed vortex particles continue to
overlap for the duration of the simu-
lation. Hence particle “redistribution”
(from a deformed set of particles onto
a new set of regularly spaced particles)
may become necessary in long-time
computations (Koumoutsakos, 1993;
Koumoutsakos and Leonard, 1992).
Finally, the particle field, ®,. is not
guaranteed to remain a good repre-
sentation of the divergence-free field,
o, = V X u,, for all imes. Hence, in
long-time computations, it may be nec-
essary to “relax” the particle weights so
that @, remains a good representation
of @, (Winckelmans, 1989; Winckel-
mans and Leonard, 1993; Pedrizzett,
1992). These considerations apply to
any vortex method and are not signif-
icantly affected, one way or the other,
by use of a tree code to carry out the
field summations.

When using multipole expansions
up to p = 2 (monopole + dipole +
quadrupole), estimates for the error
onyand u = V X s at an evaluation
point x a distance d from the center x,

of a multipole expansion are obtained
as:

1 1 Bs
fwl = g A
(1-3)
U ST F
d

flal = 727 g\ 2
(-5)
B

(20)

where b = |x% ~ x|
box properties:

> vl @1)

q

By = > Ix? — x,* Iyl . (22)
q

B, and B, are

max?

By

We choose
2 ol x?
8= By ' (23]

the centroid of the absolute value of
the particle strengths, as the center of
our multipole expansion. This choice
analytically minimizes B,, and hence
minimizes the bound on the error in-
troduced by the multipole expansion.
Notice that the dipole term of this
multipole expansion does not vanish.
The dipole moment vanishes only in
the gravitational case because the
masses are positive-definite scalars,
and the centroid of the absolute value
of the masses is identical with their
center of mass. The dipole contribu-
tion does not vanish in the case of elec-

it
1%%2%%2;‘ :

i
saaist sdnleig

NO—

Fig. 8 The positions of 81,920 vortex particles initially on the surface of a
unit sphere Each of the particles carries a vector strength wA, with u = 3/8 sinld)é, and A the area of the
projected surface element associated with that particle. The vectors are not shown for clarity, This simulation is
slightly different from thase for which timings are presented because it uses a core size o = 0.05,

trostatics either, where each particle
has a scalar electric charge that may be
of either sign.

3.2 Performance

We carried out a series of timings fora
problem representing the evolution of
an initially spherical vorticity distribu-
tion. Figure 8 shows the initial posi-
tions of vortex particles representing a
surface vorticily of sheet strength,

3
= — i ; 24
k= o sin(8)é,, (24)

SRS e
i et e

which is the solution to the problem of
flow past a sphere with unit tree-
stream velocity in the z-direction. The
problem is discretized by recursively
splitting the faces of an icosahedron
into equilateral triangles and then pro-

jecting them onto a unit sphere. The

strength of each vortex particle is
taken to be y = pA, where A is the area
of the projected triangle, and p is the
value of Eq. (24) at its centroid. By ter-
minating the recursive splitting at dif-
ferent levels, we obtain the discretiza-
tions shown in Table 1. The core size,
o, is taken to be equal to the linear size

of the unprojected triangles. Figure 9
shows the 81,920-vortex system
evolved to ¢t = 2.50 (after 100
timesteps). Note that although we de-
pict the particles as points, they actu-
ally carry a three-component strength
vector ¥. Representing the particles as
vectors merely clutters the figure. The
simulations were done using a “sum”
error tolerance (see Salmon and War-
ren, 1994) based on Eq. (20), which
guarantees that the total error in the
velocity is less than (.001.

Timings are shown in Figure 10 for
various P = 1, 2, 4,... 512, and for
the discretizations shown in Table 1.
The timings correspond to the total
wallclock time per iteration, ie., the
time spent in parallel decomposition,
computing the vector streamfunction
s, the velocity u, and the gradient of u
at each particle position, as well as up-
dating the particle positions and
strengths according to Eqgs. (17) and
(18). As with the gravitational code, we
report an average over 25 iterations,
and we do not include the first
timestep because of its anomalous par-
allel load imbalance. Comparison with
the gravitational timings confirms the
expectation that the vortex code is
somewhat more costly than the gravi-
tztional code.

The same data is replotted with an
abscissa of TP/N in Figure 11 to better
illustrate the dominant trends. Here it
is clear that one million bodies clearly

Table 1
Parameters for the
Series of Vortex
Particle Method

Simulations

Level o N

4 0.0657 5,120
5 0.0329 20,480
6 0.0164 81,920
7 0.00821 327,680
8 0.00411 1,310,720

Pt o

* e '_"""l’?. '.J.JM
ok ,,.,,...r.ﬁ’ A e

s .,amﬁw.;awnwﬂ.\,uﬂ a».w«si*‘*- Py SR ‘r-.n-u.-’" R * S

-1

Fig. 9 The vortex
simulation of Fig. 8.
avolved through 100
timeateps to t = 2.5,

is in the “large-N" limit, and that the
parallel overhead (obtained by mea-
suring the difference between the P =
512 curve and the extrapolation of the
P = | curve) isin the neighborhood of
20%. Thus, although the vortex simu-
lation is overall somewhat slower than
the gravitational simulation, it makes
more efficient use of the parallel hard-
ware (a fact that is of small consolarion
to the user with a limited computa-
tional budget). Figure 11 also demon-
strates that the scaling behavior with N
is again slightly super-linear. This time
the exponent is approximately T o
N2

4. CONCLUSION

The two methods described here dem-
onstrate that tree codes are versatile
and scale well on large parallel com-
puters. Despite the complexity of the
algorithms involved, we have been
able to use essentially the same code 1o
solve problems in vortex dynamics and
astrophysics. The code, including all
auxiliary software for such tasks as
random number generation, fast ap-
proximate square root, a primitive de-
bugging facility, flexible timers and
counters, etc., as well as the essential
elements (parallel quicksort, multi-

T {sec)

Fig- 10 Tima per timestep for the
vortex method versus numbaer of
vortices, averaged over several
timasteps.

word key and hash-table manipula-
tion, tree construction, and traversal
and field evaluation) consists of about
9,000 lines of C source code and
header files. Of this, about 7,000 lines
are in a common library that is com-
pletely shared by the two applications
(in fact, much of the library is not even

. e
o
_ Pz o

b '“ﬂ'"ﬂ“
LALERE
%Qiquxm

T'P{N (processor-sacivortax)
o
T
/

i '

10000

100000 1000000
N (vorticea)

Fig. 11 The same data as Figure
10, but plotted with an abscissa of
TP/N The parallel overhead can be estimated by
measuring the difference between a P # 1 curve and
the {extrapolation of the) P = 1 curve, The large A
dependence is again slightly super-linear over the
range of N studied.

specific to tree codes). Of the remain-
ing 2,000 lines, about 700 are identical
in the two applications. We are pursu-
ing further abstractions that will allow
us to separate these into the common
library as welk.

It is important to note that the pro-
grams and libraries described here are
portable to other parallel supercom-
puters. We have run the code on Intel
Paragon and iPSC/860 systems, an
IBM SP-1, a CM-5, an Ncube-2, and
on networks of workstations, as well as
the “degenerate” parallel case of a sin-
gle uniprocessor workstation. Al that
is required to support a new systemn is
the creation of an appropriate Make-
file 1o define such things as the C com-
piler, linker, etc., and the creation of a
single system-dependent C source file.
The system-dependent file maps a
very small number of primitive OS re-
quests {e.g., What processor number
am 1?) into system calls appropriate
for the target architecture. The Delta
version of this file is 400 lines in length
and con-sists primarily of name-trans-
lations from, e.g., our internal name
Procnum () to the OS-specific name
myproc (). Porting this file to a new
platform typically requires a few
hours, most of which is spent search-
ing the target system’s manuals for rel-
evant system calls.

Portability and versatility are ex-
tremely important attributes for the
parallel tree code. We are actively pur-
suing other application areas where
tree codes show great promise. The
electrostatic interaction in molecukar
dynamics is long range and has the
same functional form as Newtonian
gravity. In some circumstances it can
dominate the time required to carry
out a simulation. In fact, the perceived
cost of calculating electrostatic interac-
tions may influence the choice of prob-
lems or the approximations that are
studied. Several authors have used
tree codes to address this problem,
but, to our knowledge, none have used

e K APELIERTIO
%@&fé%w BRI 0

parallel architectures and none have
used error-bound criteria like Eq. (6).

Integral equations in potential the-
ory were historically the first applica-
tion of tree codes (Rokhlin, 1985). Re-
lated problems give rise to the largest
problems currently addressed with
O(N®)-dense linear solvers (Edelman,
1993). We are in the process of com-
pleting a tree-code implementation of
a boundary integral equation solver
which will be incorporated into our
vortex dynamics code to account for
the presence of bluft bodies in the
flow. The resulting program will use
tree codes in two separate contexts: o
compute the interactions between vor-
tices, and to compute the interactions
between surface panels as part of an
iterative solver to satisfy boundary
conditions on the surfaces. The inter-
actions are different in the two con-
texts, as are the spatial distribution of
sources and the error criteria, but the
parallel tree code library provides
much of the necessary machinery for
both contexts. Preliminary results indi-
cate that one million—panel systems
can be solved on the Delta in a few
minutes. Such problems would be
completely intractable using tradi-
tional solvers.

ACKNOWLEDGMENT

This research was performed in part
using the Intel Touchstone Delta sys-
tem operated by Caltech on behalf of
the Concurrent Supercomputing
Consortium. Access to this facility
was provided by Caltech and LANL.
JKS and GSW were supported by the
National Science Foundation Center
for Research in Parallel Computa-
tion. GSW was also supported by Of-
fice of Naval Research, Grant No.
N00014-92-J-1072. MSW and JKS
were supported in part by a grant
from the Natonal Aeronautics and

Space Administration under the
HPCC program.

BIOGRAPHIES

John Salmon graduated from MIT in
1981 with an S.B. in Physics and
EECS. He has an M.S. (1983) in
Physics from University of California,
Berkeley and a Ph.D. (1990) in Phys-
ics from the California Institute of
Technology. His research is in the
application of high-performance par-
allel computers and “fast” methods to
problems in astrophysics and other
disciplines. He is currently a staff
member with the Caltech Concurrent
Supercomputing Facility.

Michael S. Warren received his B.S. in
Physics and Engineering from the
California Institute of Technology in
1988, and a Ph.D. in Physics from
the University of California, Santa
Barbara in 1994. He has been active
in the development of parallel tree
codes since 1987. He is currently ap-
plying fast parallel tree codes to cur-
rent problems in cosmology and as-
trophysical hydrodynamics as a tech-
nical staff member in the Theoretical
Astrophysics group at Los Alamos
National Laboratory.

Grégoire §. Winckelmans earned a
Dipléme d’Ingénieur Civil Méca-
nicien (Mechanical Engineer) from
the Université Catholique de Louvain
a Louvain-la-Neuve in 1983, a Post-
graduate Diploma from the von Kar-
man Institute for Fluid Dynamics in
1984 and an M.S. (1985) and a Ph.D.
(1989) in Aeronautics from the Cali-
fornia Institute of Technology. He
was also a postdoctoral Research Fel-
low there. He is currently an Assis-
tant Professor of Mechanical Engi-
neering at the University of Sher-
brooke in Québec. His research
involves the development of fast par-

LA

B

et ?

e

[a—

& ‘,de“"")" -

e

PN Ll

jarl

FURY B

P

e vt % -) , . »- - . ‘ : T & e _‘ . w“) Wi) _
—— o W*M’ MM&.-’"‘ . J_‘_,,,,,.mw‘"“ T T " ﬁfﬂr"& {W ﬂ_‘i_’,.-*‘“"' . ‘J'j\nm L &

ticle vortex methods and fast bound-
ary-element methods for problems in
computational fluid dynamics, and of
other particle methods for problems

in computational combustion.

SUBJECT AREA EDITOR

James Sethian

REFERENCES

Anderson, C., and Greengard, C.
1985. On vortex methods. SIAM J.
Numer. Anal. 22(3):413—440.

Appel, A. W. 1985. An efficient pro-
gram for many-body simulation.
SIAM J. Sci. Stat. Comp. 6:85.

Barnes, J. E., and Hut, P. 1986. A
hierarchical O(Nlog N} force-calcula-
tion algorithm. Nature 324:446—449.

Beale, J. 1986. A convergent 3-d vor-
tex method with grid-free stretching.
Math. Comprut. 46:401-—423 and S15—

20.

Beale, ., and Majda, A. 1982a. Vor-
tex methods, I: convergence in three
dimensions. Math. Comput. 39:1-27.

Beale, J., and Majda, A. 1982b. Vor-
tex methods, LI: higher order accu-
racy in two and three dimensions,
Math. Comput. 39:29-52.

Benz, W., Bowers, R. L., Cameron,
A.G. W, and Press, W. H. 1990. Dy-
namic mass exchange in doubly de-
generate binaries [. 0.9 and 1.2 M
solar stars. Ap. J. 348:647.

Board, J. A., Causey, |. W., Leath-
rum, J. F., Windemuth, A., and
Schulten, K. 1992, Accelerated mo-
lecular dynamics simulation with the
parallel fast muhipole algorithm.
Chem. Phys. Leit. 198:89,

Choquin, J.-P. 1987. Simulation numé-
rique d'écoulements tourbillonnaires de
fluides incompressibles par des méthodes
particulaires. Ph.D. thesis, Université
Paris VI.

Choquin, J.-P., and Cottet,].-H.
[988. Sur l'analyse d'une classe de

méthodes de vortex tridimension-
nelles. C. R. Acad. Sci. Paris 306(1):
739742,

Chorin, A. 1980. Vortex models and
boundary layer instability. STAM [.
Sci. Stat. Comput. 1(1):1-21.

Chorin, A. 1981, Estimates of inter-
mittency, spectra, and blow-up in
developed turbulence. Comm. Pure
Appl. Math. 34:853-866.

Chua, K., Leonard, A., Pépin, F.,
and Winckelmans, G. 1988. Robust
vortex methods for three-dimen-
sional incompressible flows. In Proc.
Symp. recent developments in computa-
tional fluid dynamics 95:33—44, Chi-
cago: ASME.

Cottet, G.-H. 1988. On the conver-
gence of vortex methods in two and
three dimensions. Ann. Inst. Henri
Poincaré 5:227-285.

Ding, H.-Q., Karasawa, N, and God-
dard, W. 1992, Atomic level simula-
tions of a million particles: The cell
multipole method for coulomb and

london interactions. J. Chem. Phys.
97:4309-14315.

Dubinski, J., and Carlberg, R. G.
1991. The structure of cold dark
matter halos. Ap. J. 378:496.

Dyer, C.C,, and Ip, P. 8. S. 1993.
Softening in N-body simulations of
collisionless systems. Ap. J. 409:60—
67.

Edelman, A. 1993, Large dense nu-
merical linear algebra in 1993, the
parallel computing influence. Inter-
nat. J. Supercomput. Appl. 7(2):113—
128.

Engheta, N., Murphy, W. D., Rokh-
lin, V., and Vassiliou, M. S. 1992,
The fast multipole method (FMM)
for electromagnetic scattering prob-
lems. IEEE Trans. Antennas Propaga-
tron 40(6):634—-642.

Greengard, L. 1987. The rapid evalua-
tion of potential fields in particle systems.
Ph.D. thesis, Yale University.
Greengard, L. 1990. Potential flow in

channels. SIAM [. Sei. Stat. Comp.
11(4):603—620.

Greengard, L., and Rokhlin, V. 1.
1989. On the evaluation of electro-
static interactions in molecular mod-
eling. Chemica Seripta 29A:139-144.

Hockney, R. W, and Eastwood,]J. W.
1981. Computer simulation using parti-
cles. McGraw-Hill International, New
York.

Katz, N., Hernquist, L., and Wein-
berg, D. H. 1992, Galaxies and gas in
a cold dark matter universe. Ap. J.
$399:1.109.

Koumoutsakos, P. 1993. Direct numer-
ical simulations of unsteady separated
flows using vortex methods. Ph.D. thesis,
California Institute of Technology.

Koumoutsakos, P., and Leonard, A.
1992, Direct numerical simulations
using vortex methods. In Proe. NATO
advanced research workshop: Vortex flows
and related numerical methods, pp. 15—
19, Grenoble, France.

Leonard, A. 1985. Computing three-
dimensional incompressible flows
with vortex elements. Ann. Rev. Fluid
Mech. 17:523-559,

Mosher, M. 1985. A method for
computing three-dimensional vortex
flows. Z. Fluguiss. Weltraumforsch.
9(3):125-133.

Novikov, E. 1983. Generalized dy-
namics of three-dimensional vortical
singularities (vortons). Sov. Phys.
JETP 57(3):566-569,

Pedrizzetti, G. 1992. Insight into sin-
gular vortex flows. Fluid Dynamics
Res. 10:101-115.

Pépin, F. 1990. Simulation of flow past
an impulsively started cylinder using a
discrete vortex method. Ph.D. thesis, Cal-
ifornia Institute of Technology.

Rehbach, C. 1977. Numerical calcula-
tion of three-dimensional unsteady
flows with vortex sheets. Rech. Aérosp.
5:280-298,

Rokhlin, V. 1985. Rapid solution of
integral equations of classical poten-
tial theory. j. Comp. Phys. 60:187—
207.

Saffman, P. 1980. Vortex interactions
and coherent structures in turbu-

lence. In Transition and turbulence,
edited by R. Meyer, pp. 149-166.
New York: Academic Press.

Saffman, P. G., and Meiron, D. 1.
1986. Difficulties with three-dimen-
sional weak solutions for inviscid in-
compressible flow. Phys. Fluids 29(8):
2373-2375.

Salmon, J. K. 1990. Parallel hierarchi-
eal N-body methods. Ph.I}. thesis, Cali-
fornia Institute of Technology.

Salmon, J. K., Quinn, P. J., and War-
ren, M. S. 1990. Using parallel com-
puters for very large N-body simula-
tions: Shell formation using 180k
particles. In Heidelberg conference on
dynamics and interactions of galaxies,
edited by R. Wielen, pp. 216218,
New York: Springer-Verlag.

Salmon, J. K., and Warren, M. 8.
1994. Skeletons from the treecode
closet. J. Comp. Phys. 111(1):136—155.

Schmidt, K., and Lee, M. A. 1991.
Implementing the fast multipole

W@*XE%’W@?‘&’& :
asiinidal ﬁéﬁé@"

method in three dimensions. [. Stat.
Phys. 63(5/6):1223-1235.

Suginohara, T., Suto, Y., Bouchet,
F. R., and Hernquist, L. 1991. Cos-
mological N-body simulations with a
tree code: Fluctuations in the linear
and nonlinear regimes. Ap. J. Suppl.
75:631.

Warren, M. S, Quinn, P. J., Salmon,
J. K., and Zurek, W. H. 1992, Dark
halos formed via dissipationless col-
lapse: I. Shapes and alignment of
angular momentum. Ap. j. 399:405-
425,

Warren, M. S., and Salmon, J. K.
1992, Astrophysical N-body simula-
tions using hierarchical tree data
structures. In Supercomputing '92, Los
Alamitos: IEEE Comp. Soc.

Warren, M. §., and Salmon, |. K.
1993. A parallel hashed oct-tree
N-body algorithm. In Supercomputing
'93, Los Alamitos: 1IEEE Comp. Soc.

Winckelmans, G. 1989. Topics in vor-
tex methods for the compulation of three-

and two-dimensional incompressible un-
steady flows. Ph.D. thesis, California
Institute of Technology.

Winckelmans, G., and Leonard, A.
1988. Weak solutions of the three-
dimensional vorticity equation with
vortex singularities. Phys. Fluids 31(7):
1838-1839.

Winckelmans, G., and Leonard, A.
1989. Improved vortex methods for
three-dimensional flows. In S/TAM
workshop on mathemalical aspects of vor-
tex dynamics, edited by R. Caflisch, pp.
25-35, Leesburg, Virginia: SIAM.

Winckelmans, G., and Leonard, A.
1993. Contributions to vortex particle
methods for the computation of
three-dimenstonal incompressible
unsteady flows. J. Comp. Phys. 109(2):
247-273.

Zhao, F. 1987. An O(N) algorithm
for three-dimensional N-body simula-
tions. M.S. thesis, Massachusetts Insti-
tute of Technology.

'q‘ A

T ™

s C

P AN

