Astrophysical N-body Simulations

Using Hierarchical Tree Data Structures

1992 Bell Prize Finalist. Submitted to Proceedings of Supercomputing 92, Sep. 11, 1992

Michael S. Warren

Theoretical Astrophysics
Los Alamos National Laboratory

Los Alamos, NM 87545

Abstract

We report on recent large astrophysical N-body sim-
ulations executed on the Intel Touchstone Delta sys-
tem. We review the astrophysical motivation, and
the numerical techniques, and discuss steps taken to
parallelize these simulations. The methods scale as
O(N logN), for large values of N, and also scale
linearly with the number of processors. The perfor-
mance, sustained for a duration of 67 hours was be-
tween 5.1 and 5.4 Gflop/sec on a 512 processor sys-
tem.

1 Astrophysical and numerical back-
ground.

The process by which galaxies form is undoubt-
edly among the most important unsolved problems
in physics. There is a wealth of observational data,
whose quality and quantity is ever increasing. Mod-
ern observations span the electromagnetic spectrum
from radio frequency to gamma rays. Unfortunately,
we still lack a firm theoretical understanding of the
images put on photographic plates 40 years ago. The
answer to a question as simple as, “Why are there two
families of galaxies, spiral and elliptical?” still remains
a mystery.

Astrophysics i1s at a disadvantage to some of the
more terrestrial sciences. It 1s simply impossible to
conduct experiments on galaxies. An investigator can
easily change the recipe for making a superconductor.
On the other hand, the recipe for making a galaxy
requires 10*® grams of matter, and several billion years
of “baking”, which is far beyond the patience of most
scientists. With the use numerical methods, however,

John K. Salmon

Physics Department
California Institute of Technology
Pasadena, CA 91125

one can simulate the the behavior of 10*7 grams of
matter over a span of 1019 years.

The physical laws governing the evolution of gravi-
tationally interacting particles are quite simple. Given
initial positions and velocities, all that is required
are Newton’s laws of motion and universal gravita-
tion. The principles are clear, but the intrinsic non-
linearity of the equations has limited analytic studies
to small perturbations or restricted symmetries. The
only known way to obtain accurate three-dimensional
solutions is via numerical integration.

The first step in understanding how galaxies and
stars form is to understand the environment in which
their formation occurs. Thus, we use simulations to
study the shapes and dynamics of “dark matter” halos
which are known to surround observed galaxies. For
our purposes, the precise nature of the dark matter is
unimportant; the fact that it interacts only through
dissipationless gravitational forces allows us to accu-
rately simulate its evolution. Since dark matter con-
stitutes the bulk of the mass of the Universe, it plays
a dominant role in the dynamical processes involved
in galaxy formation.

The dark matter halos that we simulate are not di-
rectly observable, but they provide the gravitational
potential well into which normal matter falls, forms
stars, and emits photons which are detected by as-
tronomers.

The fundamental physical equation governing the
dynamics of stars, dark matter and other “dissipa-
tionless” phenomena is the Boltzmann equation:

atf(fa U,t)+1765f(f, Uat)—i_aaﬁf(fa Uat)zoa (1)

which describes the evolution of a phase-space density
function, f, with seven independent variables, Z, ¥, t.
It is common to treat such systems on computers by

particle methods or N-body methods[l], rather than
finite-element or finite-difference methods, which can-
not cope with the high dimensionality of the problem
domain. In an astrophysical N-body simulation, the
phase-space density distribution is represented by a
large collection of “bodies” (labeled by the indices 4,
J) which evolve in time according to the laws of New-
tonian physics:

dzfi N . Gm]'d_;]' T o .
72 :Zaljzz—w, di]':l‘i—l‘j.
j#i j#i J -
2

N-body simulations are essentially statistical in na-
ture. More bodies means a more accurate and com-
plete sampling of the phase space, and hence more ac-
curate or more complete results. Astrophysical simu-
lations require very large numbers of bodies because of
the very large density contrasts that must be treated.
Interesting phenomena occur in the dense cores of
galaxies, as well as on the fringes and in the voids
between galaxies. For example, if one is to study the
shapes of isophotes or the formation of “shells” in the
outskirts of halos, one must have enough particles in
each halo to measure the isophotes with sufficiently
low statistical noise.

Two factors govern the final state of a dynamical
system like Eqn. 2: the equations of motion that de-
scribe the evolution, and the initial conditions which
are provided as input. In the case of astrophysical N-
body simulations, an appropriate set of initial condi-
tions is a set of initial positions, velocities and masses
for all of the bodies in the system. It is through these
initial conditions that most of the physical hypotheses
enter the system.

At the present epoch, the Universe is obviously
highly irregular. Galaxies and stars as well as scien-
tists and their supercomputers constitute huge, non-
linear deviations from the large-scale uniformity in the
distribution of matter. Numerous observations (per-
haps the most compelling is the remarkable uniformity
of 3° K cosmic background radiation) imply that the
matter in the universe was far more uniformly distrib-
uted in the distant past. This is fortunate because
it allows us to use linear approximations and analytic
methods to study the evolution of matter in the early
universe. Different hypotheses about the nature of the
dark matter (e.g., cold or hot), the origin of the fluc-
tuations (e.g., quantum fluctuations in an inflationary
early universe), and the values of various global para-
meters, (e.g., the fraction of the mass of the Universe
made up of baryons) can be folded together to pro-
duce statistical descriptions of the fluctuations that

prevailed until the growth of fluctuations became non-
linear.

These descriptions generally take the form of a
power spectrum. By using Fourier transform tech-
niques, we can create instances of particular power
spectra in the form of particle positions, velocities and
masses, 1.e., in a form suitable as initial conditions for
Eqn. 2. Then, by using numerical techniques, we can
integrate Eqn. 2 until the present day, and compare
the results statistically with observation (subject to
the caveat that one cannot directly observe the dark
matter which is simulated).

Direct implementation of the system of equations
in Eqn. 2 is a trivial programming exercise. It is sim-
ply a double loop. It vectorizes well and it parallelizes
easily and efficiently. It has been used for many years
to study astrophysical systems. Unfortunately, it has
an asymptotic time complexity of O(N?). Each of N
left-hand-sides is a sum of N —1 right-hand-sides. The
fact that the execution time scales as N2 precludes the
use of Eqn. 2 for values of N larger than a few tens of
thousands, even on the fastest parallel supercomput-
ers.

A number of approximate methods have been used
which reduce the overall time, and allow simulation of
systems with larger values of N. Methods employing
an adaptive tree data structure have been popular in
recent years because the resulting time complexity is
O(N log N) or O(N), and is relatively insensitive to
the spatial distribution of particles [2, 3, 4]. N-body
simulations which use adaptive tree data structures
are referred to as treecodes.

The fundamental approximation employed by
treecodes may be stated as:

ijci;']' GMCZ; em
|dijl? B ®)

J
where ci;ycm = ¥; — Loy 1s the vector from Z; to the
center-of-mass of the particles that appear under the
summation on the left-hand side, and the ellipsis indi-
cates quadrupole, octopole, and further terms in the
multipole expansion. Generally, we use the quadru-
pole approximation, which requires a second term on
the right-hand side. The monopole approximation,
i.e., Eqn. 3 with only the first term on the right-hand
side, was known to Newton, who realized that the
gravitational effect of an extended body like the Earth
(consisting of some 3 x 10°! protons and neutrons) can
be approximated by replacing the entire system by a
point-mass located at the center of mass. The result-
ing simplification is enormous: a factor of 10! if one
wishes to know the force on a falling apple or satellite.

e
S W
P PR H [P o g o
R e Pt et o
ErH [HE b FOHEH HeARd ERHEA R H A BT HH
R e]
FFFEeE P e Eoe T H R e e 5
=0 +4t+§+#+w#wkﬁ* e e e e
PP [Een R e N e
B T e e R e e
28825 SAEE 4 g £ o SO R C NSRBI - e BRSSO BN £ e e
R S M e e M
FPr N b e o e PR L P e e A e H
T e e P e e T R e e T
B R e S o TR | e e [Ry
FatE o] BH e i e o e R e
FEH RO e [SHE R b oo ERAE P B P P D | e D
EE o T TR P T T Pt o T e e e e e)
SE 8RS8 S ue e Ri St bR Ecases i oA e ppm T e R S e e D
B B T T P S e N N N
EFF e T EH PR e et) o PR P | e b [He b e
o R e e e e L M S e e e e
B T e AP e P P e | R e b s e | |
H R B [et F e T P B T
[P RS L W R e T L T e e T T
Eeee L e e T S e e EFrEr T e
L e T HEH e PP e e e e t
B R e P e P B A e e e e T e B e ﬁ
BT R e P e e PR e T DR B e
e e e e e e P e e P e e P o e, o P e
LT b L e e P e e e] e MR e T T
e el e e Ry o e e e e e e e e e
EE R B P H T AP A o Hl Bl o PR EE T e e B P
gt o ET T | A P T B P e R e
Eab FrPEE R | HF Tl bl o i PR SRR | Ehr ey L e
Fer e e e e PRl e e e B T e e e
el Ty £t Em = et on R 8 e ke e e) R S o e T
o e e e e e e L I e R e e
H e e T R FL B B e Hp Errre e B e
B e e e H e A P b S R e P R T
ot B EE A R P b | TR e e AR TP e o
b T e T TR T T 1 b B e e e T
Fp] P o e et P T B O e byt dakin. N, Rasos i ki)
R e e e s N e Pl e e e M e e o
e e R T ey e e
FEEHE P P o e e L W et A e FH] o e
b R o e i i Tt
0 i e e s] 8 e Eecdns A e sy e HF G | tHee
o e e e e e I e sty ey e e e
EEE B e H R P b e HE e R e
o ErrC Lo o CER T P e P e E e | T P R e e
S P) | G & EHH e o]
E T e T e B e T e
e HEERE | | B EH TR [HH FFel e P + i
o e o BTREE P T e e e e
e TR e e e LM
FEr T e e e et e
B e P e R
e e e e e e
FHEE e = PR o He | FaeH e H i
i e e N
FE e e

Figure 1: A two-dimensional tree with 10000 bodies
uniformly distributed on the unit-disk.

The approximation of Eqn. 3 is not always valid. In
fact, it doesn’t converge at all if the point at which the
force is desired is inside a sphere that circumscribes
the other masses. Generally, the approximation is
better if the measurement point is far from the other
masses. The scale by which one should judge “near”
and “far” i1s simply the diameter of the sphere that
encloses the mass points.

At this point it is convenient to introduce a data
structure that represents the distribution of matter
on all length-scales. Suppose the particles are orga-
nized into a spatial, oct-tree. The root of the tree
corresponds to a cube that encloses all the bodies in
the simulation. Non-terminal nodes in the tree have
up to eight daughters, corresponding to the eight sub-
cubes that result from cutting the parent in half in
each dimension. Any cell containing only one body
is terminal. A two-dimensional example is shown in
Fig. 1. Furthermore, suppose that each internal cell
in the oct-tree contains the total mass of the bodies
in it, their center-of-mass and their quadrupole mo-
ments. Then it is possible to compute the force on
any body by recursively traversing the tree according
to the procedure outlined in Fig 2. Although it is
not obvious from this brief description, the number of
times Eqn. 3 is evaluated during a traversal of the tree
is proportional to log N. Computing the forces on all
N bodies requires traversing the tree N times and is
thus O(N log N) in time.

(a) %’/ I

(b) [cm

© —

Figure 2: Schematic representation of the recursive
structure of a treecode. (a) The exact force on a body
is the result of a summation over all particles in a cell.
(b) If the multipole approximation is valid, then the
summation can be replaced by a single evaluation of
Eqn. 3. (¢) Otherwise, the cell is subdivided into eight
daughters, and the procedure, i.e., steps (b) and (c),
is recursively applied to the daughters.

2 Parallelism.

Astrophysical treecodes represent a formidable
challenge for parallel computation. The difficulties
stem from some fundamental properties of the prob-
lem:

e The distribution of bodies is highly non-uniform.
e The distribution of bodies is dynamic.

e The data structures are adaptive, and moderately
complicated.

e Each body needs both global and local data for
its update.

The non-uniformity of the data precludes use of a
regular spatial decomposition. Instead, we adopted
the technique of orthogonal recursive bisection, ORB
[5], whereby space is recursively divided in two, and
half the processors are assigned to each domain until
there 1s one processor associated with each rectangular
domain. In order to avoid wasting time due to load
imbalance and idle processors, it is crucial to divide
space into domains with equal work-loads. The fact
that the simulations are dynamic makes it impossible
to precompute the decomposition or the communica-
tion pattern as would be the case with an irregular
but static problem.

Complex data structures present problems as well.
Standard notations like Fortran90 or High Perfor-
mance Fortran cannot readily represent a distributed
adaptive tree. More importantly, exactly what one
means by a “distributed adaptive tree” is not imme-
diately obvious. It certainly depends on what one in-
tends to do with the data structure. An answer comes
from consideration of the last difficulty: the need for
both global and local data in the update of each body.

Specifically, every body sees only a fraction of the
complete tree. The distant parts are seen only at a
coarse level of detail, while the nearby sections are
seen all the way down to the leaves. The crucial ob-
servation is that nearby bodies see similar trees. In
fact, if one considers all the bodies in an ORB do-
main, one can construct the union of all the trees they
see. This union is called the locally essential tree. It
is the data that will be required to compute the forces
on every body in the domain. A locally essential tree,
for a processor whose domain is the lower-left corner
of Fig. 1 i1s shown in Fig. 3. A strategy is now clear,
at least in principle:

e Obtain the locally essential tree in every proces-
sor.

e Proceed exactly as in the sequential case, travers-
ing the tree once for each particle.

The fact that the second step is exactly the same
as in the sequential case is significant. It constitutes
the bulk of the time used by the algorithm, and it
is useful to be able to write highly tuned sequential
assembly language without regard to communication,
synchronization or other parallel issues.

The problem now is to obtain the locally essential
tree. The key is to use the recursive structure provided
by the ORB. The result of ORB is a set of log, P spa-
tial bisectors and corresponding partitions of proces-
sors. Locally essential data can be routed to its correct

b
e

Figure 3: The locally essential tree for a processor
whose domain is in the lower left corner of the system
which gives rise to Fig. 1.

location by looping over the bisectors, and repeatedly
determining which local data is part of a locally essen-
tial tree on the other side of the cut. Every processor
identifies its own exportable data, and then exchanges
that data with a processor in the complimentary par-
tition on the other side of the bisector. After log, P
exchanges, every processor is in possession of its lo-
cally essential tree.

The determination of which data to send is inti-
mately related to how the data will be used. It is
crucial that one can determine, a prior:, which parts
of a tree in local memory will also be needed in the
evaluation of forces on an unspecified remote proces-
sor. Returning to the original algorithm, we find that
this determination is, in fact, possible. The sequential
algorithm asks: Is this multipole acceptable for the
evaluation of the force at a particular location? The
parallel algorithm must also ask: Is this multipole ac-
ceptable for the evaluation of the force at any point in
a rectangular parallelepiped (i.e., in a processor’s do-
main)? The sequential algorithm prescribes that the
first question is answered by computing a ratio of dis-
tance to cell-size. We can answer the second by using
the same criterion with a redefined distance: the dis-
tance from the edge of the cell to the boundary of the
rectangular domain.

3 Recent simulations.

Our parallel N-body code has been evolving for sev-
eral years, and on several platforms. At press time,
the fastest available platform is the Intel Touchstone
Delta at Caltech, on which the simulations reported
here were run. We have also run significant simula-
tions on an Intel ipsc/860, Ncube machines, and the
Caltech/JPL MarkIII [6, 7, 8, 9, 10, 11].

The statistics quoted below are based on internal
diagnostics compiled by our program. Essentially,
we keep track of the number of interactions com-
puted. Each monopole interaction costs 29 flops, each
quadrupole interaction costs 77 flops and each eval-
uation of the opening criterion costs 6 flops (using
the Livermore Loops prescription of 1sqrt =4flops,
1division=4flops and 1comparison=1flop). The
flop rates follow from the interaction counts and the
elapsed wall-clock time. The flop counts are identi-
cal to the best available sequential algorithm. We do
not count flops associated with decomposition or other
parallel constructs. The reported times are for the en-
tire application, including I/0O, communication, pro-
gram initialization, etc. Overall, we see about 15% of
the time spent in parallel overhead (communication,
load imbalance, etc.), which corresponds to a parallel
efficiency of about 87%.

3.1 An 8.78 million body simulation.

In March 1992, we ran a simulation with 8,783,848
bodies on 512 processors for 780 timesteps. The sim-
ulation was of a spherical region of space 10Mpc
(Megaparsec) on a side; a region large enough to con-
tain several hundred typical galaxies. Our simula-
tion ran continuously for 16.7 hours, and carried out
3.24 x 10'* floating point operations, for a sustained
rate of 5.4 Gflop/sec. Had we attempted the same
calculation with a conventional O(N?) algorithm, it
would have taken almost 3000 times as long to ob-
tain an equivalent answer. We created 15 checkpoint
files totaling 4.21 Gbytes. Had we saved all the poten-
tially useful intermediate data, it would have required
273 Gbytes. A single checkpoint from this simulation
exceeds 280 Mbytes. It is impractical to analyze the
results on anything other than a parallel supercom-
puter. To that end, we have ported some of our analy-
sis software to the Delta, and have isolated individual
halos for further analysis. The 700 individual halos in
this simulation have anywhere from 1,000 to 130,000
bodies, making them comparable in size to “state-of-
the-art” isolated halo models running on Crays and
other vector supercomputers. The Delta allowed us to

evolve several hundred large halos simultaneously, in a
realistic environment, providing us with much needed
statistics, as well as information concerning environ-
mental effects on evolution which cannot be obtained
from isolated halo models.

3.2 Two 17.15 million body simulations.

In June 1992, in response to the recently announced
measurement of the microwave background anisotropy
by the COBE satellite [12, 13], we ran two large simu-
lations of the Cold Dark Matter model of the Universe.
The COBE measurement has constrained the last re-
maining free parameters left in this popular theory,
and allows us to produce initial conditions in which the
power spectrum of initial fluctuations is completely
specified, including the overall amplitude. These are,
by any measure, the largest N-body simulations ever
run . The results of the simulations are being ana-
lyzed. When compared with other observational con-
straints we hope they will provide compelling evidence
either for or against the model

The simulations represented regions with diame-
ter 250 Mpc and 100 Mpc, and had 17,158,608 and
17,154,598 bodies, respectively. The individual par-
ticles each represented about 3.3 x 10'° My and 2.0 x
10° Mg, respectively, so that galaxy-size halos are ex-
pected to form with tens to thousands of individual
particles; enough to obtain reasonable statistics con-
cerning the distributions and correlations of sizes. The
spatial resolution was 20 kpc in both cases. They ran
for 597 and 667 timesteps, in 23.5 and 28.6 hours, re-
spectively, and wrote 21 and 27 data files for a total of
11.53 and 13.72 Gbytes. They respectively performed
4.33 x 10'* and 5.32 x 10'* floating point operations,
sustaining rates of 5.2Gflop/sec and 5.1Gflop/sec.

4 Supporting software.

High performance computing is not easy. The 1860
processor promises extraordinary performance, but
compiled code rarely if ever achieves that performance.
Unfortunately, the field of N-body simulations does
not possess a recognized set of abstractions like the
BLAS for linear algebra. Thus, there is no highly
tuned commercial software available for carrying out
the inner loops of our calculations. In the quest for

1A simulation with 17 million bodies has been reported [14]
using a different approximation which suffers from limited spa-
tial resolution. It ran for over 600 hours on an IBM vector
supercomputer. In contrast, our simulation, with marginally
larger N, had twenty times the linear spatial resolution, and
ran in one twentieth the time.

performance, we have written the inner force calcula-
tion loops entirely in 1860 assembly language. Two
routines were necessary, for monopole and quadru-
pole interactions, which constitute roughly 1000 lines
of machine instructions. By arranging the calcula-
tions to proceed three at a time the code was fully
pipelined, even including a Newton-Raphson inverse
square root. In this manner, we achieve at least one
addition or multiplication per clock cycle (notwith-
standing cache delays). The assembly coded mono-
pole and quadrupole interaction routines run at about
22 Mflops/sec/node; a factor of eight better than ob-
tained with the C compiler.

Portability is an extremely important issue. The
Delta is neither the first nor the last parallel supercom-
puter that will run our N-body code. We have found
that we can achieve an acceptable degree of portability
by disciplined use of a few very simple communication
primitives (essentially the eshift routine from CrosITI
[15]) and a well-defined model of I/O (essentially cubiz
[16] with some modifications). We have developed our
own ANSI C implementation of these primitives, and
we have ported them to all of the parallel processors at
our disposal. Other systems are available which osten-
sibly provide the same level of portability. However,
we believe that our efforts have been paid back many
times over in increased functionality, convenience, and
control over the timing of bug-fixes and upgrades. Per-
haps most important, the same libraries allow us to
compile and run our code on a network of worksta-
tions, with all the conventional debugging and perfor-
mance tools available. The end result is the ability to
produce advanced software with less time debugging,
and more time to produce scientific results.

We have also written a substantial amount of analy-
sis and visualization software, which accounts for
many more lines of code than the parallel treecode
itself. As the simulations have become larger, it has
been necessary to write more and more of the analysis
software so that it will run on a parallel machine. An
example is the algorithm which 1dentifies the location
and size of individual halos in a cosmological simula-
tion, which required us to implement a general parallel
quicksort.

A final auxiliary software effort is the Self-
Describing File format (SDF). We have found that the
structure of our data files changes fairly frequently. In
order to avoid the task of re-writing all our data input
routines every time we compute another physical pa-
rameter, we have designed a file-format in which the
structure of the binary data is described by an ascii
header at the beginning of the file. Since the header is

interpreted at runtime, old software doesn’t even have
to be recompiled to read new data files. This idea
18, of course, not new, but to our knowledge, SDF is
more expressive than other similarly motivated soft-
ware (HDF and FITS in particular) and is also the
only such software running in a parallel environment.

5 The future.

Scientific software is never complete. The prob-
lems of interest evolve and grow as new observations,
new theories and new simulations emerge. After a few
years of experience with a particular simulator, it is
worthwhile to start afresh, creating a new code that
incorporates the lessons laboriously learned from the
old, as well as introducing new “physics”, and new
numerical techniques.

An entirely new treecode algorithm has been run-
ning for several months and is nearly ready for pro-
duction The new hashed oct-tree (HOT) algorithm
represents a major advance in style and sophistica-
tion. One of the limitations of the current production
code is the complexity involved in determining locally
essential data. The use of independent timestep in-
tegration methods which advance particles according
to the local timescale is problematical with the old
code. HOT can accommodate independent timestep
integration schemes as well as an important new class
of cell opening criteria [17] for which it is difficult to
predict, a priori, which cells are required in a rectangu-
lar domain. HOT will also support O(N) methods [4],
which involve interactions between cells, in addition to
the cell-body and body-body interactions which pre-
vail in the O(N log N) methods we have used until
now. The critical value of N at which O(N) meth-
ods outperform O(N log N) methods is far from clear
because the “constants” depend so strongly on both
the specific problem and the most mundane of imple-
mentation details. However, by extending the error-
estimates in [17] to describe the interactions present
in O(N) algorithms, we believe that superior perfor-
mance can be achieved for realistic values of N.

The HOT method labels each possible cell with a
key (a 64 bit integer derived from the spatial coordi-
nates) and uses indirection through a hash table to lo-
cate data. Data stored in remote processors, as well as
local data, can be requested through the hash-table in-
quiry routines. Minimizing latency, and tolerating the
irreducible remainder by continuing with other work,
are critical to the efficient functioning of the method.
Thus, the inner loop of the algorithm is modified so
that processing can continue while requests for non-

local data are serviced in the “background”. In this
manner, locally essential data is acquired automati-
cally, as 1t is needed, without a penalty from commu-
nication latency, and without requiring the ability to
assemble a locally essential tree a prior:.

Treecodes are by no means restricted to astro-
physics. Many of the data generation and synthesis
tasks associated with our simulation data can be ex-
pressed using hierarchical data structures, albeit not
with gravitational interactions. Molecular dynamics
simulations with charged or polar species (e.g., ions,
water) are limited by the same O(N?) behavior as our
gravitational simulations. Computational fluid dy-
namics using the vortez method requires solution of an
N-body problem with a force law that is similar to that
in gravity. Reaction-diffusion equations can be trans-
formed into a computational problem with a similar
structure. Even further afield are uses of spatial tree
data structures in data compression, image process-
ing, visualization and database searching. Our HOT
implementation is far more flexible than the current
production code. We believe it will not only be adapt-
able enough to satisfy our own needs for data analysis
tasks, but will also enable us to collaborate with sci-
entists in other disciplines to investigate broader uses
of parallel treecodes.

Acknowledgments

We thank the CSCC and the CCSF for providing
computational resources. JS wishes to acknowledge
support from the Advanced Computing Division of the
NSF, as well as the CRPC. MW wishes to acknowledge
support from IGPP and AFOSR.

References

[1] R. W. Hockney and J. W. Eastwood, Computer Sim-
ulation Using Particles. New York: Mcgraw-Hill In-
ternational, 1981.

[2] A. W. Appel, “An efficient program for many-body
simulation,” SIAM Journal of Scientific and Statisti-
cal Computing, vol. 6, p. 85, 1985.

[3] J. E. Barnes and P. Hut, “A hierarchical O(NlogN)
force-calculation algorithm,” Nature, vol. 324,
pp. 446-449, 1986.

[4] L. Greengard and V. I. Rokhlin, “A fast algorithm
for particle simulations,” Journal of Computational
Physics, vol. 73, pp. 325-348, 1987.

[5] S. B. Baden, Run-time Partitioning of Scientific
Continuum Calculations Running on Multiprocessors.

PhD thesis, U.C. Berkeley, 1987.

[6] J. K. Salmon, P. J. Quinn, and M. S. Warren, “Using
parallel computers for very large N-body simulations:
Shell formation using 180k particles,” in Heidelberg
Conference on Dynamics and Interactions of Galazxies
(R. Wielen, ed.), (New York), pp. 216-218, Springer-
Verlag, 1990.

[7] M. S. Warren, P. J. Quinn, J. K. Salmon, and W. H.
Zurek, “Dark haloes formed via dissipationless col-
lapse: 1. shapes and alignment of angular momen-
tum,” Astrophysical Journal, 1992. (accepted for pub-
lication).

[8] M. S. Warren and J. K. Salmon, “A parallel treecode
for gravitational N-body simulations with up to 20

million particles,” Bulletin of the American Astro-
nomical Society, vol. 23, no. 4, p. 1345, 1991.

[9] M. S. Warren, W. H. Zurek, P. J. Quinn, and J. K.
Salmon, “The shape of the invisible halo: N-body
simulations on parallel supercomputers,” in After the
First Three Minutes Workshop Proceedings (S. Holt,
V. Trimble, and C. Bennett, eds.), (New York), AIP
Press, 1991.

[10] D. P. Fullagar, P. J. Quinn, and J. K. Salmon, “N-
body simulations of a4 isophote deviations in elliptical
galaxies,” in Proceedings of ESO/EIPC Workshop on
the Structure, Dynamics and Chemical Evolution of
FEarly-Type Galazies (1. J. Danziger, ed.), (Munich),
European Southern Observatory, 1992.

[11] C. Grillmair, Dynamics of Globular Cluster Systems.
PhD thesis, Australia National University, 1992.

[12] C. L. Bennett et al., “Preliminary separation of galac-
tic and cosmic microwave emissions for the COBE
DMR,” COBE preprint 92-05, Goddard Space Flight
Center, 1992.

[13] G.F. Smoot et al., “Structure in the COBE DMR first
year maps,” COBE preprint 92-04, Goddard Space
Flight Center, 1992.

[14] E. Bertschinger and J. M. Gelb, “Large cosmological
N-body simulations,” Computers in Physics, vol. 5,
no. 2, p. 164, 1991.

[15] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto,
J. K. Salmon, and D. W. Walker, Solving Problems on
Concurrent Processors. Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

[16] J. K. Salmon, “CUBIX: Programming hypercubes
without programming hosts,” in Hypercube Multi-
Processors 1987 (M. Heath, ed.), (Philadelphia),
pp. 3-9, STAM, 1987.

[17] J. K. Salmon and M. S. Warren, “Skeletons from the
treecode closet,” Journal of Computational Physics,
1992. (submitted).

